Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[bis(μ_3 -thiocyanato- $\kappa^3 N:S:S'$)(μ_2 thiocyanato- $\kappa^2 N:S$)(4'-p-tolyl-2,2':6',2''terpyridine- $\kappa^3 N, N', N''$)cadmium(II)silver(I)]

Yu-Yang Li,^a Zhen-Hong Wei^a and Seik Weng Ng^{b*}

^aDepartment of Chemistry, Nanchang University, Nanchang 330031, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 15 September 2010; accepted 18 September 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.037; wR factor = 0.097; data-to-parameter ratio = 13.6.

The title compound, $[AgCd(NCS)_3(C_{22}H_{17}N_3)]_n$, is a heteroatom ribbon coordination polymer. The central Cd atom is chelated by the 4'-*p*-tolyl-2,2':6',2"-terpyridine ligand and is coordinated by the N atoms of three thiocyanate ions in an octahedral geometry whereas the Ag atom is coordinated by the four S atoms of four thiocyanate ions in a distorted tetrahedral geometry. Of the three thiocyanate ions, one functions in a μ_2 -bridging mode and two in a μ_3 -bridging mode. The ribbon coordination polymer propagates along the *a*-axis.

Related literature

For the synthesis and coordination chemistry of the terpyridine ligand, see: Zhang *et al.* (2006).

Experimental

Crystal data

 $\begin{bmatrix} AgCd(NCS)_3(C_{22}H_{17}N_3) \end{bmatrix} \\ M_r = 717.90 \\ Triclinic, P\overline{1} \\ a = 10.2431 (10) \text{ Å} \\ b = 10.7881 (10) \text{ Å} \\ c = 13.1180 (12) \text{ Å} \\ \alpha = 73.045 (2)^{\circ} \\ \beta = 69.000 (2)^{\circ} \end{bmatrix}$

V = 1290.1 (2) Å³ Z = 2Mo K α radiation $\mu = 1.85 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.30 \times 0.25 \text{ mm}$

6870 measured reflections

 $R_{\rm int} = 0.018$

4432 independent reflections

3910 reflections with $I > 2\sigma(I)$

 $\gamma = 88.231 \ (2)^{\circ}$

Data collection

```
Bruker SMART diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T_{min} = 0.604, T_{max} = 1.000
```

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.037 & 326 \text{ parameters} \\ wR(F^2) = 0.097 & H-atom \text{ parameters constrained} \\ S = 1.02 & \Delta\rho_{max} = 0.75 \text{ e } \text{\AA}^{-3} \\ 4432 \text{ reflections} & \Delta\rho_{min} = -0.59 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Selected bond lengths (Å).

Cd1-N1	2.344 (3)	Cd1-N6	2.275 (4)
Cd1-N2	2.326 (3)	Ag1-S1	2.707 (2)
Cd1-N3	2.322 (3)	Ag1-S1 ⁱ	2.589 (1)
Cd1-N4	2.308 (4)	Ag1-S2	2.639 (1)
Cd1-N5	2.312 (4)	Ag1-S3 ⁱⁱ	2.521 (1)

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the National Innovation Fund for University Students, the Chinese Ministry of Education, Nanchang University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2062).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Zhang, X., Li, D. & Zhou, X.-P. (2006). New J. Chem. 30, 706-711.

Acta Cryst. (2010). E66, m1313-m1314 [doi:10.1107/S160053681003744X]

$\begin{aligned} &\text{Poly}[\text{bis}(\mu_3-\text{thiocyanato-}\kappa^3N:S:S')(\mu_2-\text{thiocyanato-}\kappa^2N:S)(4'-p-\text{toly}l-2,2':6',2''-\text{terpyridine-}\kappa^3N,N',N'') \\ &\text{cadmium}(II) \\ &\text{silver}(I)] \end{aligned}$

Y.-Y. Li, Z.-H. Wei and S. W. Ng

Comment

We have recently explored the coordination chemistry of 4'-aryl-2,2':6',2"-terpyridines; such neutral ligands feature three pyridyl sites that are capable of terdentate chelation (Zhang *et al.*, 2006). Occasionally, we have been able to synthesize a bis-chelated metal system whose positive charge is balanced by a metallate ion. In the present study, the attempt at synthesizing bis(4'-*p*-tolyl-2,2':6',2"-terpyridine)cadmium tristhiocyanatoargentate gave instead a compound formulated from the diffraction analaysis as $[AgCd(NCS)_3(C_{22}H_17N_3)]_n$ (Scheme I, Fig. 1). The heteroatom coordination polymer has the Cd centre coordinated by the 4'-*p*-tolyl-2,2':6',2"-terpyridine ligand and the N atoms of three thiocyanate ions in an octahed-ral geometry. The Ag atom is coordinated by the S atoms of four thiocyanate ions in a tetrahedral geometry. Of the three thiocyanate ions, one functions in a μ_2 -bridging mode and two in a μ_3 -bridging mode. The ribbon coordination polymer propagates along the *a*-axis of the triclinic unit cell. (Fig. 2).

Experimental

Silver thiocyanate (0.066 g, 0.4 mmol), cadmium perchlorate hexahydrate (0.042 g, 0.1 mmol) and 4'-*p*-tolyl-2,2':6',2"-terpyridine (0.065 g, 0.2 mmol, which was synthesized by using a literature procedure (Zhang *et al.*, 2006), along with triphenylphosphine (0.105, 0.4 mmol) and acetonitrile (8 ml) were placed in a 15-ml, Teflon-lined, stainless-steel Parr bomb. The reactor was heated in an oven at 723 K for 72 h. It was then cooled to room temperature at a rate of 10 K an hour. Yellow crystals were obtained in 50% (based on 4'-*p*-tolyl-2,2':6',2"-terpyridine).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

Figures

Fig. 1. Displacement ellipsoid plot of a portion of the ribbon structure of $[AgCd(NCS)_3(C_{22}H_{17}N_3)]_n$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Symmetry codes: (i) -*x*, -*y*+1, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1.

Fig. 2. The ribbon coordination polymer in the title compound, which propagates in the *a*-axis direction.

$\begin{array}{l} \text{Poly}[\text{bis}(\mu_3\text{-thiocyanato-}\kappa^3N\text{:}S\text{:}S')(\mu_2\text{-thiocyanato-}\kappa^2N\text{:}S)(4'\text{-}p\text{-tolyl-}2,2'\text{:}6',2''\text{-terpyridine-}\kappa^3N,N',N'') \\ \text{cadmium}(II)\text{silver}(I)] \end{array}$

Crystal data

$[AgCd(NCS)_3(C_{22}H_{17}N_3)]$	Z = 2
$M_r = 717.90$	F(000) = 704
Triclinic, <i>P</i> T	$D_{\rm x} = 1.848 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.2431 (10) Å	Cell parameters from 2780 reflections
b = 10.7881 (10) Å	$\theta = 2.7 - 25.0^{\circ}$
c = 13.1180 (12) Å	$\mu = 1.85 \text{ mm}^{-1}$
$\alpha = 73.045 \ (2)^{\circ}$	T = 295 K
$\beta = 69.000 \ (2)^{\circ}$	Prism, yellow
$\gamma = 88.231 \ (2)^{\circ}$	$0.30\times0.30\times0.25~mm$
$V = 1290.1 (2) \text{ Å}^3$	

Data collection

Bruker SMART diffractometer	4432 independent reflections
Radiation source: fine-focus sealed tube	3910 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.018$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996)	$h = -9 \rightarrow 12$
$T_{\min} = 0.604, \ T_{\max} = 1.000$	$k = -10 \rightarrow 12$
6870 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.097$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_0^2) + (0.0548P)^2 + 0.5516P]$ where $P = (F_0^2 + 2F_c^2)/3$
4432 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
326 parameters	$\Delta ho_{ m max} = 0.75 \ { m e} \ { m \AA}^{-3}$

0 restraints

$$\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$$

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
Cd1	0.35097 (3)	0.60113 (3)	0.72815 (2)	0.03873 (12)
Ag1	0.10392 (4)	0.65042 (5)	0.43358 (4)	0.06953 (15)
S1	0.15459 (13)	0.40610 (14)	0.53373 (12)	0.0620 (3)
S2	0.02307 (13)	0.81055 (13)	0.55890 (11)	0.0564 (3)
S 3	0.67482 (14)	0.24010 (13)	0.73061 (11)	0.0581 (3)
N1	0.5157 (3)	0.7499 (3)	0.5680 (3)	0.0406 (8)
N2	0.4812 (3)	0.7228 (3)	0.7841 (3)	0.0326 (7)
N3	0.2798 (3)	0.5376 (3)	0.9263 (3)	0.0399 (8)
N4	0.1985 (5)	0.4575 (5)	0.7163 (5)	0.0832 (15)
N5	0.1895 (4)	0.7448 (4)	0.6917 (4)	0.0584 (10)
N6	0.5008 (4)	0.4416 (4)	0.7139 (4)	0.0665 (12)
C1	0.1772 (5)	0.4438 (5)	0.9948 (4)	0.0532 (11)
H1	0.1315	0.4041	0.9613	0.064*
C2	0.1365 (5)	0.4039 (5)	1.1107 (4)	0.0603 (13)
H2	0.0646	0.3385	1.1553	0.072*
C3	0.2025 (5)	0.4612 (5)	1.1601 (4)	0.0620 (13)
H3	0.1763	0.4360	1.2393	0.074*
C4	0.3089 (5)	0.5572 (5)	1.0916 (4)	0.0545 (12)
H4	0.3553	0.5970	1.1246	0.065*
C5	0.3470 (4)	0.5943 (4)	0.9750 (3)	0.0337 (8)
C6	0.4614 (4)	0.6971 (4)	0.8953 (3)	0.0337 (8)
C7	0.5406 (4)	0.7635 (4)	0.9314 (3)	0.0363 (9)
H7	0.5251	0.7436	1.0089	0.044*
C8	0.6438 (4)	0.8600 (4)	0.8517 (3)	0.0340 (8)
С9	0.7284 (4)	0.9362 (4)	0.8865 (3)	0.0369 (9)
C10	0.6754 (4)	0.9573 (4)	0.9935 (3)	0.0415 (9)
H10	0.5896	0.9157	1.0469	0.050*
C11	0.7497 (5)	1.0396 (4)	1.0209 (4)	0.0459 (10)
H11	0.7120	1.0524	1.0926	0.055*
C12	0.8775 (4)	1.1029 (4)	0.9452 (4)	0.0447 (10)
C13	0.9541 (5)	1.1953 (5)	0.9751 (5)	0.0663 (14)
H13A	0.9749	1.2780	0.9169	0.099*
H13B	1.0399	1.1609	0.9801	0.099*
H13C	0.8963	1.2060	1.0475	0.099*
C14	0.9318 (4)	1.0779 (4)	0.8406 (4)	0.0503 (11)
H14	1.0195	1.1170	0.7889	0.060*
C15	0.8601 (4)	0.9973 (4)	0.8109 (4)	0.0440 (10)
H15	0.8997	0.9832	0.7398	0.053*
C16	0.6626 (4)	0.8850 (4)	0.7365 (3)	0.0355 (8)
H16	0.7299	0.9495	0.6807	0.043*
C17	0.5810 (4)	0.8137 (4)	0.7051 (3)	0.0323 (8)
C18	0.5954 (4)	0.8332 (4)	0.5847 (3)	0.0353 (8)
C19	0.6844 (5)	0.9295 (4)	0.4939 (4)	0.0505 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H19	0.7387	0.9869	0.5063	0.061*
C20	0.6929 (5)	0.9406 (5)	0.3842 (4)	0.0595 (13)
H20	0.7532	1.0052	0.3222	0.071*
C21	0.6119 (5)	0.8558 (5)	0.3677 (4)	0.0587 (13)
H21	0.6156	0.8615	0.2945	0.070*
C22	0.5254 (5)	0.7624 (5)	0.4611 (4)	0.0568 (12)
H22	0.4704	0.7045	0.4499	0.068*
C23	0.1773 (5)	0.4366 (4)	0.6421 (5)	0.0560 (12)
C24	0.1223 (4)	0.7706 (4)	0.6354 (4)	0.0446 (10)
C25	0.5739 (5)	0.3592 (5)	0.7190 (4)	0.0473 (10)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.04172 (18)	0.04043 (19)	0.03918 (19)	-0.00649 (13)	-0.01985 (14)	-0.01209 (13)
Ag1	0.0610 (3)	0.0831 (3)	0.0699 (3)	0.0058 (2)	-0.0246 (2)	-0.0300 (2)
S1	0.0546 (7)	0.0666 (8)	0.0731 (9)	0.0051 (6)	-0.0310 (6)	-0.0237 (7)
S2	0.0565 (7)	0.0618 (8)	0.0601 (7)	0.0134 (6)	-0.0275 (6)	-0.0245 (6)
S3	0.0647 (8)	0.0528 (7)	0.0564 (7)	0.0111 (6)	-0.0235 (6)	-0.0148 (6)
N1	0.0443 (19)	0.046 (2)	0.0326 (18)	-0.0096 (15)	-0.0156 (15)	-0.0100 (15)
N2	0.0344 (16)	0.0323 (17)	0.0337 (17)	-0.0058 (13)	-0.0143 (14)	-0.0105 (13)
N3	0.0363 (17)	0.0424 (19)	0.0394 (18)	-0.0107 (14)	-0.0115 (15)	-0.0115 (15)
N4	0.095 (4)	0.065 (3)	0.126 (4)	-0.002 (3)	-0.077 (4)	-0.035 (3)
N5	0.050 (2)	0.055 (2)	0.065 (3)	-0.0041 (18)	-0.025 (2)	-0.004 (2)
N6	0.059 (3)	0.065 (3)	0.088 (3)	0.015 (2)	-0.032 (2)	-0.035 (3)
C1	0.048 (2)	0.056 (3)	0.053 (3)	-0.018 (2)	-0.016 (2)	-0.014 (2)
C2	0.049 (3)	0.060 (3)	0.054 (3)	-0.017 (2)	-0.003 (2)	-0.008 (2)
C3	0.069 (3)	0.064 (3)	0.039 (3)	-0.018 (3)	-0.007 (2)	-0.009 (2)
C4	0.063 (3)	0.064 (3)	0.033 (2)	-0.021 (2)	-0.012 (2)	-0.013 (2)
C5	0.0331 (19)	0.033 (2)	0.035 (2)	-0.0038 (15)	-0.0117 (16)	-0.0111 (16)
C6	0.037 (2)	0.034 (2)	0.032 (2)	-0.0043 (16)	-0.0150 (16)	-0.0101 (16)
C7	0.038 (2)	0.041 (2)	0.031 (2)	-0.0049 (17)	-0.0113 (17)	-0.0130 (17)
C8	0.0305 (18)	0.034 (2)	0.041 (2)	0.0000 (15)	-0.0157 (17)	-0.0133 (17)
С9	0.038 (2)	0.032 (2)	0.048 (2)	-0.0030 (16)	-0.0234 (18)	-0.0136 (18)
C10	0.046 (2)	0.039 (2)	0.044 (2)	-0.0021 (18)	-0.0191 (19)	-0.0146 (19)
C11	0.059 (3)	0.043 (2)	0.049 (3)	0.002 (2)	-0.030 (2)	-0.020 (2)
C12	0.050 (2)	0.032 (2)	0.067 (3)	0.0007 (18)	-0.037 (2)	-0.015 (2)
C13	0.068 (3)	0.048 (3)	0.107 (4)	0.000 (2)	-0.054 (3)	-0.031 (3)
C14	0.037 (2)	0.048 (3)	0.065 (3)	-0.0087 (19)	-0.021 (2)	-0.011 (2)
C15	0.037 (2)	0.049 (3)	0.050 (3)	-0.0034 (18)	-0.0166 (19)	-0.019 (2)
C16	0.0336 (19)	0.033 (2)	0.038 (2)	-0.0075 (16)	-0.0108 (16)	-0.0091 (17)
C17	0.0331 (19)	0.033 (2)	0.034 (2)	0.0000 (15)	-0.0140 (16)	-0.0124 (16)
C18	0.0357 (19)	0.039 (2)	0.031 (2)	-0.0022 (16)	-0.0124 (16)	-0.0102 (17)
C19	0.060 (3)	0.047 (3)	0.042 (2)	-0.014 (2)	-0.017 (2)	-0.010 (2)
C20	0.076 (3)	0.055 (3)	0.033 (2)	-0.016 (2)	-0.011 (2)	-0.001 (2)
C21	0.076 (3)	0.069 (3)	0.030 (2)	-0.005 (3)	-0.019 (2)	-0.011 (2)
C22	0.070 (3)	0.066 (3)	0.040 (3)	-0.013 (2)	-0.026 (2)	-0.015 (2)
C23	0.051 (3)	0.036 (2)	0.089 (4)	0.000 (2)	-0.039 (3)	-0.014 (2)

C24	0.039 (2)	0.037 (2)	0.045 (2)	-0.0052 (18)	-0.002 (2)	-0.0088 (19)
C25	0.052 (3)	0.052 (3)	0.045 (2)	-0.004 (2)	-0.020 (2)	-0.021 (2)
Geometric parar	neters (Å, °)					
Cd1—N1		2.344 (3)	С5—	-C6	1.49	90 (5)
Cd1—N2		2.326 (3)	С6—	-C7	1.37	79 (5)
Cd1—N3		2.322 (3)	С7—	-C8	1.39	91 (5)
Cd1—N4		2.308 (4)	С7—	-H7	0.93	300
Cd1—N5		2.312 (4)	C8—	-C16	1.39	96 (5)
Cd1—N6		2.275 (4)	C8—	-C9	1.47	77 (5)
Ag1—S1		2.707 (2)	С9—	-C10	1.39	96 (6)
Ag1—S1 ⁱ		2.589(1)	С9—	-C15	1.39	98 (5)
Ag1—S2		2.639(1)	C10-	C11	1.38	36 (5)
Ag1—S3 ⁱⁱ		2.521 (1)	C10-	H10	0.93	300
S1—C23		1.642 (6)	C11-	C12	1.37	76 (6)
\$1Δσ1 ⁱ		2,5885 (13)	C11-	-H11	0.93	300
S2C24		1.636 (5)	C12-		1 39	87 (6)
S2 C24 S3—C25		1.630(5)	C12-		1.50)3 (6)
$S_2 = A_{\alpha} 1^{ii}$		2,5206(14)	C13-	_H13A	0.96	500
SS—Agi		2.3200(14)	C13-	U12D	0.90	500
NI-C18		1.330(3) 1.345(5)	C13-		0.90	500
N1-C13		1.343(5)	C14-		1.3	75 (6)
N2-C6		1.333(5)	C14-	—е15 —н14	0.93	3 (0) 800
N2 C0		1 339 (5)	C15-	H15	0.93	800
N3-C5		1.357(5)	C16-		1 30	90 (5)
N4—C23		1.153 (7)	C16-	-H16	0.93	300
N5-C24		1.153 (5)	C17-	C18	1.48	34 (5)
N6-C25		1.147 (6)	C18-		1.37	74 (6)
C1—C2		1.359 (6)	C19-	C20	1.37	79 (6)
C1—H1		0.9300	C19-	—H19	0.93	300
С2—С3		1.354 (7)	C20-	—C21	1.30	66 (6)
C2—H2		0.9300	C20-	—H20	0.93	300
C3—C4		1.376 (6)	C21-	C22	1.36	63 (6)
С3—Н3		0.9300	C21-	—H21	0.93	300
C4—C5		1.370 (5)	C22-	—H22	0.93	300
C4—H4		0.9300				
N6—Cd1—N4		84.66 (17)	С7—	-C6—C5	123	.5 (3)
N6—Cd1—N5		160.41 (16)	С6—	-С7—С8	120	.0 (3)
N4-Cd1-N5		81.73 (16)	С6—	-С7—Н7	120	.0
N6—Cd1—N3		92.25 (14)	C8—	-С7—Н7	120	.0
N4—Cd1—N3		97.42 (16)	С7—	-C8C16	117	.4 (3)
N5—Cd1—N3		103.41 (14)	С7—	-C8C9	121	.9 (3)
N6—Cd1—N2		95.23 (13)	C16-	—С8—С9	120	.7 (3)
N4—Cd1—N2		167.09 (16)	C10-	C9C15	117	.5 (3)
N5-Cd1-N2		101.17 (13)	C10-	—С9—С8	121	.1 (3)
N3—Cd1—N2		69.67 (10)	C15-	—С9—С8	121	.3 (4)
N6-Cd1-N1		91.04 (15)	C11-	—С10—С9	120	.6 (4)

NA CHI NI	102 (2 (1()	C11 C10 U10	110.7
N4—Cd1—N1	123.02 (10) 84.88 (13)	$C_{11} = C_{10} = H_{10}$	119.7
N2 CH N1	129.05(13)	$C_{12} = C_{11} = C_{10}$	119.7
N_2 Cd1 N_1	138.95 (11) 69.28 (11)	C12—C11—C10	122.0 (4)
22^{ii} A_{a1} 21^{i}	138 17 (5)	C10_C11_H11	119.0
33 - Ag1 - S1	105.09 (4)		117.1 (4)
S3"—Ag1—S2	105.98 (4)	011-012-014	117.1(4)
S1 ¹ —Ag1—S2	90.37 (4)	C11—C12—C13	121.1 (4)
S3 ⁱⁱ —Ag1—S1	108.43 (4)	C14—C12—C13	121.7 (4)
S1 ⁱ —Ag1—S1	95.96 (4)	C12—C13—H13A	109.5
S2—Ag1—S1	118.55 (4)	С12—С13—Н13В	109.5
C23—S1—Ag1 ⁱ	114.50 (18)	H13A—C13—H13B	109.5
C23—S1—Ag1	96.64 (17)	C12—C13—H13C	109.5
Ag1 ⁱ —S1—Ag1	84.04 (4)	H13A—C13—H13C	109.5
C24—S2—Ag1	99.72 (16)	H13B—C13—H13C	109.5
C25—S3—Ag1 ⁱⁱ	98.82 (16)	C15—C14—C12	122.1 (4)
C22—N1—C18	118.6 (3)	C15—C14—H14	118.9
C22—N1—Cd1	122.4 (3)	C12—C14—H14	118.9
C18—N1—Cd1	118.8 (2)	C14—C15—C9	120.7 (4)
C17—N2—C6	119.9 (3)	C14—C15—H15	119.7
C17—N2—Cd1	120.1 (2)	С9—С15—Н15	119.7
C6—N2—Cd1	120.0 (2)	C17—C16—C8	120.1 (3)
C1—N3—C5	118.3 (3)	C17—C16—H16	120.0
C1—N3—Cd1	122.7 (3)	C8—C16—H16	120.0
C5—N3—Cd1	119.0 (2)	N2—C17—C16	121.0 (3)
C23—N4—Cd1	134.6 (5)	N2—C17—C18	115.5 (3)
C24—N5—Cd1	140.6 (4)	C16—C17—C18	123.5 (3)
C25—N6—Cd1	172.6 (4)	N1-C18-C19	120.8 (3)
N3—C1—C2	123.3 (4)	N1-C18-C17	116.1 (3)
N3—C1—H1	118.4	C19—C18—C17	123.1 (3)
C2—C1—H1	118.4	C18—C19—C20	119.7 (4)
C3—C2—C1	118.7 (4)	С18—С19—Н19	120.1
С3—С2—Н2	120.6	С20—С19—Н19	120.1
C1—C2—H2	120.6	C21—C20—C19	119.3 (4)
C2—C3—C4	119.1 (4)	С21—С20—Н20	120.3
С2—С3—Н3	120.4	С19—С20—Н20	120.3
С4—С3—Н3	120.4	C22—C21—C20	118.3 (4)
C5—C4—C3	120.3 (4)	C22—C21—H21	120.9
C5—C4—H4	119.9	C20—C21—H21	120.9
C3—C4—H4	119.9	N1—C22—C21	123.4 (4)
N3—C5—C4	120.3 (3)	N1—C22—H22	118.3
N3—C5—C6	116.4 (3)	С21—С22—Н22	118.3
C4—C5—C6	123.3 (3)	N4—C23—S1	177.5 (5)
N2—C6—C7	121.7 (3)	N5—C24—S2	177.7 (4)
N2—C6—C5	114.8 (3)	N6—C25—S3	178.1 (5)
S3 ⁱⁱ —Ag1—S1—C23	100.41 (18)	C1—N3—C5—C4	-0.8 (6)
S1 ⁱ —Ag1—S1—C23	-114.05 (18)	Cd1—N3—C5—C4	-178.8 (3)
S2—Ag1—S1—C23	-20.36 (19)	C1—N3—C5—C6	179.4 (4)

S3 ⁱⁱ —Ag1—S1—Ag1 ⁱ	-145.53 (4)	Cd1—N3—C5—C6	1.3 (5)
S1 ⁱ —Ag1—S1—Ag1 ⁱ	0.0	C3—C4—C5—N3	0.4 (7)
S2—Ag1—S1—Ag1 ⁱ	93.69 (5)	C3—C4—C5—C6	-179.8 (4)
S3 ⁱⁱ —Ag1—S2—C24	-82.97 (15)	C17—N2—C6—C7	0.7 (6)
S1 ⁱ —Ag1—S2—C24	136.05 (15)	Cd1—N2—C6—C7	177.2 (3)
S1—Ag1—S2—C24	39.05 (15)	C17—N2—C6—C5	179.8 (3)
N6—Cd1—N1—C22	87.0 (4)	Cd1—N2—C6—C5	-3.7 (4)
N4—Cd1—N1—C22	2.8 (4)	N3-C5-C6-N2	1.5 (5)
N5-Cd1-N1-C22	-73.8 (4)	C4—C5—C6—N2	-178.3 (4)
N3—Cd1—N1—C22	-178.3 (3)	N3—C5—C6—C7	-179.4 (4)
N2—Cd1—N1—C22	-177.7 (4)	C4—C5—C6—C7	0.7 (6)
N6-Cd1-N1-C18	-98.6 (3)	N2—C6—C7—C8	0.3 (6)
N4—Cd1—N1—C18	177.1 (3)	C5—C6—C7—C8	-178.7 (4)
N5-Cd1-N1-C18	100.6 (3)	C6—C7—C8—C16	-0.3 (6)
N3—Cd1—N1—C18	-4.0 (4)	C6—C7—C8—C9	178.2 (4)
N2-Cd1-N1-C18	-3.4 (3)	C7—C8—C9—C10	-27.7 (6)
N6-Cd1-N2-C17	89.3 (3)	C16—C8—C9—C10	150.8 (4)
N4—Cd1—N2—C17	178.2 (6)	C7—C8—C9—C15	156.8 (4)
N5—Cd1—N2—C17	-79.9 (3)	C16—C8—C9—C15	-24.7 (6)
N3—Cd1—N2—C17	179.7 (3)	C15-C9-C10-C11	2.2 (6)
N1—Cd1—N2—C17	0.2 (3)	C8—C9—C10—C11	-173.4 (4)
N6-Cd1-N2-C6	-87.2 (3)	C9-C10-C11-C12	-0.3 (6)
N4—Cd1—N2—C6	1.7 (8)	C10-C11-C12-C14	-1.9 (6)
N5-Cd1-N2-C6	103.6 (3)	C10-C11-C12-C13	177.9 (4)
N3—Cd1—N2—C6	3.2 (3)	C11-C12-C14-C15	2.3 (6)
N1—Cd1—N2—C6	-176.3 (3)	C13-C12-C14-C15	-177.6 (4)
N6-Cd1-N3-C1	-85.5 (4)	C12-C14-C15-C9	-0.3 (7)
N4—Cd1—N3—C1	-0.6 (4)	C10-C9-C15-C14	-1.9 (6)
N5—Cd1—N3—C1	82.6 (4)	C8—C9—C15—C14	173.7 (4)
N2-Cd1-N3-C1	179.7 (4)	C7—C8—C16—C17	-0.6 (6)
N1-Cd1-N3-C1	-179.7 (3)	C9—C8—C16—C17	-179.1 (4)
N6—Cd1—N3—C5	92.4 (3)	C6—N2—C17—C16	-1.7 (6)
N4—Cd1—N3—C5	177.3 (3)	Cd1—N2—C17—C16	-178.2 (3)
N5-Cd1-N3-C5	-99.4 (3)	C6—N2—C17—C18	179.2 (3)
N2—Cd1—N3—C5	-2.3 (3)	Cd1—N2—C17—C18	2.7 (4)
N1-Cd1-N3-C5	-1.7 (4)	C8-C16-C17-N2	1.7 (6)
N6—Cd1—N4—C23	-88.6 (6)	C8—C16—C17—C18	-179.3 (3)
N5-Cd1-N4-C23	77.3 (6)	C22-N1-C18-C19	0.3 (6)
N3—Cd1—N4—C23	179.9 (6)	Cd1—N1—C18—C19	-174.3 (3)
N2—Cd1—N4—C23	-178.7 (5)	C22—N1—C18—C17	-179.4 (4)
N1-Cd1-N4-C23	-0.9 (7)	Cd1—N1—C18—C17	6.0 (5)
N6-Cd1-N5-C24	5.1 (8)	N2-C17-C18-N1	-5.7 (5)
N4—Cd1—N5—C24	-41.3 (5)	C16—C17—C18—N1	175.3 (4)
N3—Cd1—N5—C24	-137.1 (5)	N2-C17-C18-C19	174.6 (4)
N2—Cd1—N5—C24	151.4 (5)	C16—C17—C18—C19	-4.5 (6)
N1—Cd1—N5—C24	83.7 (5)	N1-C18-C19-C20	-0.3 (7)
C5—N3—C1—C2	0.6 (7)	C17—C18—C19—C20	179.4 (4)
Cd1—N3—C1—C2	178.6 (4)	C18—C19—C20—C21	0.3 (8)

N3—C1—C2—C3	-0.1 (8)	C19—C20—C21—C22	-0.2 (8)
C1—C2—C3—C4	-0.3 (8)	C18—N1—C22—C21	-0.2 (7)
C2—C3—C4—C5	0.2 (8)	Cd1—N1—C22—C21	174.1 (4)
Symmetry codes: (i) $-x$, $-y+1$, $-x$	z+1; (ii) $-x+1$, $-y+1$, $-z+1$.		

Fig. 2

